Downward Wave Propagation on the Polar Vortex
نویسندگان
چکیده
This paper considers the propagation of waves on the edge of a stratospheric polar vortex, represented by a three-dimensional patch of uniform potential vorticity in a compressible quasigeostrophic system. Waves are initialized by perturbing the vortex from axisymmetry in the center of the vortex, and their subsequent upward and downward propagation is measured in terms of a nonlinear, pseudomomentumbased wave activity. Under conditions typical of the winter stratosphere, the dominant direction of wave propagation is downward, and wave activity accumulates in the lower vortex levels. The reason for the preferred downward propagation arises from a recent result of Scott and Dritschel, which showed that the three-dimensional Green’s function in the compressible system contains an anisotropy that causes a general differential rotation in a finite volume vortex. The sense of the differential rotation is to stabilize the upper vortex and destabilize the lower vortex. This mechanism is particularly interesting in view of recent interest in the downward influence of the stratosphere on the troposphere and also provides a possible conservative, balanced explanation of the formation of the robust dome plus annulus potential vorticity structure observed in the upper stratosphere.
منابع مشابه
On the time-scales of the downward propagation and of the tropospheric planetary wave response to the stratospheric circulation
Three datasets (the NCEP-NCAR reanalysis, the ERA-40 reanalysis and the LMDz-GCM), are used to analyze the relationships between large-scale dynamics of the stratosphere and the tropospheric planetary waves during the Northern Hemisphere (NH) winter. First, a crossspectral analysis clarifies the time scales at which downward propagation of stratospheric anomalies occurs in the lowfrequency band...
متن کاملStratospheric control of upward wave flux near the tropopause
[1] Using an idealized, global primitive equation model of the stratosphere-troposphere system in which all tropospheric variability is surpressed, we demonstrate the existence of internal modes of stratospheric variability. The variability in our model is similar to that observed in the winter stratosphere, consisting of sudden-warming like, wave-driven decelerations of the polar vortex follow...
متن کاملDoes the Holton–Tan Mechanism Explain How the Quasi-Biennial Oscillation Modulates the Arctic Polar Vortex?
Idealized experiments with the Whole Atmosphere Community Climate Model (WACCM) are used to explore the mechanism(s) whereby the stratospheric quasi-biennial oscillation (QBO) modulates the Northern Hemisphere wintertime stratospheric polar vortex. Overall, the effect of the critical line emphasized in the Holton–Tan mechanism is less important than the effect of the mean meridional circulation...
متن کاملThe Three-Dimensional Structure of Breaking Rossby Waves in the Polar Wintertime Stratosphere
The three-dimensional nature of breaking Rossby waves in the polar wintertime stratosphere is studied using an idealized global primitive equation model. The model is initialized with a well-formed polar vortex, characterized by a latitudinal band of steep potential vorticity (PV) gradients. Planetary-scale Rossby waves are generated by varying the topography of the bottom boundary, correspondi...
متن کاملThe Use of Fourier Transforms for Asynoptic Mapping: Applications to the Upper Atmosphere Research Satellite Microwave Limb Sounder
Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (03), chlorine monoxide (C1O), temperature and water vapor have been transformed by this process. The transforms have be...
متن کامل